Hogyan gondolkodik a generatív MI? Szegedi kutatók keresik a választ a chatbotok titkaira
A mesterséges intelligencia (MI) egyre több feladatban segít minket a mindennapokban, de mi történik egy chatbot „fejében”, amikor választ ad egy kérdésre vagy értelmez egy utasítást? Többek között erre keresi a választ a Szegedi Tudományegyetem Mesterséges Intelligencia Kompetencia Központjának áprilisban induló kutatása, együttműködésben az amerikai Rutgers Egyetemmel és a német Ludwig-Maximilians-Universitättel. A cél, hogy mélyebben feltárják a generatív nyelvi modellek működését a technológia biztonságosabb és hatékonyabb alkalmazása érdekében.
Belelátni a generatív MI modellek fejébe
A mesterséges intelligencia képes utánozni az emberi gondolkodást, de valóban érti is a saját döntéseit? A generatív modellek – amelyek különféle algoritmusok és gépi tanulási modellek segítségével a megadott utasítások alapján hoznak létre új tartalmakat – képesek lehetnek sakkozni, de felmerül a kérdés, hogy valóban ismerik-e a játékszabályokat, vagy csupán mintázatokat követnek anélkül, hogy értenék a játék működését.
A RAItHMA projekt keretében induló kutatás egyik fontos témája, hogy a generatív MI modellek hogyan reprezentálják az egyes fogalmakat, és ezek a fogalmak milyen kapcsolatban állnak egymással. Magyarán, ha egy chatbot igaznak ítél egy állítást, vajon automatikusan hamisnak tartja annak tagadását? Az emberi gondolkodás számára ez magától értetődő, de a nyelvi modellek esetében nem minden esetben teljesül.
A chatbotok meglepő korlátai
„A nagy nyelvi modellek nem a tényleges tudást vagy a szabályok megértését sajátítják el, hanem pusztán a szövegek folytatására épülnek. Ebből kifolyólag a chatbotok olykor olyan alapvető kérdésekben hibáznak, amelyeket adott esetben egy gyermek is képes megválaszolni. Ha például felsoroljuk a hét törpe nevét, majd megkérdezzük, hogy egy adott név szerepelt-e a listán, a modell nem mindig tudja a helyes választ. Az MI képes akár rendkívül összetett matematikai feladatokat is megoldani, ugyanakkor nehezen birkózik meg a halmaz fogalmával és néha egészen egyszerű feladványokkal is. Ha sikerül felderíteni ennek hátterét, nagyot léphetünk előre a mesterséges intelligencia jobb megértése és biztonságosabb, hatékonyabb használata felé”
– mondta Dr. Jelasity Márk, az Interdiszciplináris Kutatásfejlesztési és Innovációs Kiválósági Központ Mesterséges Intelligencia Kompetenciaközpont vezetője.
A kutatók arra is keresik a választ, hogy mi áll ezeknek az ellentmondásoknak a hátterében, milyen belső tudással rendelkezik a modell, és miképpen csökkenthető a kommunikációs zavar ember és gép között. Amellett, hogy ez a munka a generatív MI megbízhatóságának javítását szolgálja, új távlatokat nyithat a modellek alkalmazásában számos területen.
Megbízhatunk a mesterséges intelligenciában?
Ahogy egyre több területen alkalmazzuk a mesterséges intelligenciát, komoly kockázatot jelent, ha nem értjük pontosan, hogyan működnek ezek a modellek. Egy önvezető autó például képes felismerni az előtte haladó járműveket és a közlekedési táblákat, de nem képes megérteni a közlekedési helyzeteket. Egy ember tudja, hogy ha egy labda begurul az útra, valószínűleg egy gyerek fog utána szaladni – a mesterséges intelligencia viszont ezt a kontextust egyelőre nem képes felismerni.
Az egyik alapvető hiányosság, hogy a modellek nem építenek ki stabil világmodellt, ami kulcsfontosságú lenne a megbízható működéshez. A Szegedi Tudományegyetem kutatói nemzetközi partnereikkel együtt arra törekednek, hogy feltárják a generatív MI korlátait és mélyebben megértsék működését. Első lépésként ugyanis, ha pontosabb képet kapunk arról, hogyan „gondolkodnak” ezek a rendszerek és milyen hibák jellemzik őket, az hosszú távon segíthet új megközelítéseket kialakítani. Az így szerzett tudás hozzájárulhat a jövő MI-rendszereinek alakításához, a hatékonyabb, megbízhatóbb tervezéshez. A mesterséges intelligencia ugyanis nem csupán egy technológiai eszköz, hanem a tudomány egy olyan területe, amelynek mélyebb megismerése kulcsfontosságú a jövő fejlesztéseihez.
Kapcsolódó cikkeink
A mesterséges intelligencia városi felhasználásáról szóló mintaprojekt indul
Miskolcon valósul meg az első olyan magyarországi mintaprojekt, amely városi…
Tovább olvasom >GVH: az új mesterséges intelligencia stratégiában jó irány a kkv-szektor támogatása
A mesterséges intelligencia (MI) stratégia megújítása több ponton is összhangban…
Tovább olvasom >MEGJELENT A TRADE MAGAZIN LEGFRISSEBB SZÁMA!
Büszkeséggel mutatjuk be a Trade magazin legújabb, 2025/4. számát, amelynek…
Tovább olvasom >További cikkeink
Komoly átalakulásban a magyar tésztapiac
A szokások változása alapjaiban formálják át a magyar tésztapiacot –…
Tovább olvasom >Magyar Édességgyártók Szövetsége: stagnáló piacon egyensúlyoz a magyar édesipar
A hazai édesipar számára mennyiségben stagnáló piacot hozott 2024, és…
Tovább olvasom >Linamar és Gallicoop vezeti továbbra is a Békés vármegyei TOP100 vállalati listát
Továbbra is a Linamar Hungary Zrt. és a Gallicoop Zrt.…
Tovább olvasom >